Regular Languages and Grammars: Equivalence, Non-Regularity, and Pumping Lemma Proofs and Constructions

Khushraj

November 14, 2025

Overview

- Equivalence between Regular Grammars and Regular Languages
 - Construction: DFA to Regular Grammar
 - Proof of Correctness
 - Construction: Regular Grammar to NFA
 - Proof of Correctness
- Proof that $L = \{0^n 1^n \mid n \ge 0\}$ is Not Regular
- Statement of the Pumping Lemma for Regular Languages
- General Proof of the Pumping Lemma

Definition: Regular Grammars

A right-linear grammar has productions of the form:

- \bullet $A \rightarrow aB$
- \bullet $A \rightarrow a$
- $A \rightarrow \epsilon$

where A, B are non-terminals, a is a terminal, and ϵ is the empty string. Left-linear grammars are symmetric $(A \rightarrow Ba \text{ or } A \rightarrow a)$.

Regular grammars are either right- or left-linear.

We prove equivalence by bidirectional constructions.

Construction: From DFA to Regular Grammar

Given DFA $M = (Q, \Sigma, \delta, q_0, F)$ accepting L(M), construct right-linear grammar $G = (V, \Sigma, P, S)$:

- Non-terminals V = Q
- Start symbol $S = q_0$
- Productions P:
 - For each $\delta(q,a)=q'$, add $q \to aq'$
 - For each $f \in F$, add $f \to \epsilon$

Intuition: Derivations mimic paths in the DFA.

Proof of Correctness: DFA to Grammar

Subsets

- $L(G) \subseteq L(M)$: Any derivation starts at q_0 , follows transitions, ends in $f \in F$ via ϵ . Traces an accepting path.
- $L(M) \subseteq L(G)$: For accepting path on $w = a_1 \dots a_n$ from $q_0 = q^{(0)}$ to $q^{(n)} \in F$:

$$S \Rightarrow q^{(0)} \rightarrow a_1 q^{(1)} \Rightarrow \cdots \Rightarrow a_1 \dots a_n q^{(n)} \Rightarrow a_1 \dots a_n$$

Thus, L(G) = L(M).

Construction: From Regular Grammar to NFA

Given right-linear $G = (V, \Sigma, P, S)$ generating L(G), construct NFA $M = (Q, \Sigma, \delta, q_0, F)$:

- States $Q = V \cup \{q_f\}$ (new final state)
- Start $q_0 = S$, Final $F = \{q_f\}$
- Transitions δ :
 - For $A \rightarrow aB$, $\delta(A, a)$ includes B
 - For $A \rightarrow a$, $\delta(A, a)$ includes q_f
 - For $A \to \epsilon$, $\delta(A, \epsilon)$ includes q_f

Intuition: States are non-terminals; transitions follow productions. (Left-linear: Symmetric or convert to right-linear.)

Proof of Correctness: Grammar to NFA

Subsets

- $L(M) \subseteq L(G)$: Accepting path from S to q_f on w corresponds to leftmost derivation.
- $L(G) \subseteq L(M)$: Leftmost derivation $S \Rightarrow^* \alpha A \beta \Rightarrow \alpha a \gamma \beta$ (via $A \to aC$) extends path from S to C on αa . Terminals/ ϵ reach q_f .

Thus, L(G) = L(M). Regular grammars generate exactly regular languages.

Proof: $L = \{0^n 1^n \mid n \ge 0\}$ is Not Regular

Assume L is regular. Let p be the pumping length. Choose $w=0^p1^p\in L$, $|w|=2p\geq p$. By Pumping Lemma: w=xyz with $|xy|\leq p$, |y|>0, $xy^kz\in L$ for all $k\geq 0$. Since $|xy|\leq p$, x, y in 0^p prefix: $y=0^m$ $(1\leq m\leq p)$. For k=2: $xy^2z=0^{p+m}1^p\notin L$ (unequal exponents).

Contradiction. Thus, L is not regular.

Statement of the Pumping Lemma for Regular Languages

Pumping Lemma: Let *L* be regular with pumping length $p \ge 1$. For every $w \in L$, $|w| \ge p$, there exist x, y, z s.t. w = xyz:

- |y| > 0
- $3 xy^k z \in L \text{ for all } k \ge 0$

(Contrapositive used for non-regularity proofs.)

General Proof: Pumping Lemma for Regular Languages

Let L regular, accepted by DFA $M=(Q,\Sigma,\delta,q_0,F),\ |Q|=n\geq 1.$ Set p=n. For $w\in L,\ |w|\geq p\colon w=a_1\dots a_m\ (m\geq n).$ Accepting run: $q_0\xrightarrow{a_1}q_1\to\cdots\to q_m\in F,\ q_i=\delta(q_0,a_1\dots a_i).$ Pigeonhole: Among q_0,\dots,q_n (n+1 states), $q_i=q_j$ for $0\leq i< j\leq n$ (j-i>1).

General Proof: Pumping Lemma (cont.)

Set:

- $x = a_1 \dots a_i$ (to q_i)
- $y = a_{i+1} \dots a_i \text{ (loop, } |y| = j i > 0)$
- $z = a_{j+1} \dots a_m$ (from $q_j = q_i$ to $q_m \in F$)

Then $|xy| = j \le n = p$, |y| > 0.

For $k \ge 0$: xy^kz path: prefix to q_i , k loops on y (back to q_i), suffix to $q_m \in F$.

Thus, xy^kz accepted, $\in L$.

Works for any such w. (NFAs: Convert to DFA.)